【4/18更新】CiNii ArticlesのCiNii Researchへの統合について

For Geometric Inference from Images, What Kind of Statistical Model Is Necessary?

この論文をさがす

抄録

In order to facilitate smooth communications with researchers in other fields including statistics, this paper investigates the meaning of "statistical methods" for geometric inference based on image feature points, We point out that statistical analysis does not make sense unless the underlying "statistical ensemble" is clearly defined. We trace back the origin of feature uncertainty to image processing operations for computer vision in general and discuss the implications of asymptotic analysis for performance evaluation in reference to "geometric fitting", "geometric model selection", the "geometric AIC", and the "geometric MDL". Referring to such statistical concepts as "nuisance parameters", the "Neyman-Scott problem", and "semiparametric models", we point out that simulation experiments for performance evaluation will lose meaning without carefully considering the assumptions involved and intended applications.

収録刊行物

被引用文献 (0)*注記

もっと見る

参考文献 (0)*注記

もっと見る

関連論文

もっと見る

関連研究データ

もっと見る

関連図書・雑誌

もっと見る

関連博士論文

もっと見る

関連プロジェクト

もっと見る

関連その他成果物

もっと見る

詳細情報

問題の指摘

ページトップへ