ARモデルからの区分線形の簡単化

書誌事項

タイトル別名
  • LINE SIMPLIFICATIONS FROM AR MODEL

この論文をさがす

説明

This paper describes a line simplification algorithm combining self-organization and auto-regression, and the algorithm keeps a quality for drawing simplified lines even when scaled. A self-organization enables us a microscopic autonomous behavior to produce macro structures, and plays a coordination which reflects to every two neighbor vertices. On the other hand, auto-regression maintains the shape of original lines, so the regression tries to track the original features as much as possible by considering lines locally as time series. Our contributions are to show that the two models work well together and give us positive results by complementing each other without losing the original essential features. Finally, we present some experimental results showing our usefulness.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1390572175485211008
  • NII論文ID
    120007119567
  • NII書誌ID
    AA12677220
  • DOI
    10.15002/00024008
  • HANDLE
    10114/00024008
  • ISSN
    21879923
  • 本文言語コード
    ja
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ