液晶エラストマーの力学特性に関するインフォマティクス解析

  • 保岡 悠
    パナソニック(株)テクノロジー本部マテリアル応用技術センター
  • 田頭 健司
    パナソニック(株)テクノロジー本部マテリアル応用技術センター
  • 土居 英男
    (国研)産業技術総合研究所 機能材料コンピューテーショナルデザイン研究チーム
  • 高橋 和義
    (国研)産業技術総合研究所 機能材料コンピューテーショナルデザイン研究センター
  • 福田 順一
    九州大学大学院理学研究物理学部門
  • 青柳 岳司
    (国研)産業技術総合研究所 機能材料コンピューテーショナルデザイン研究センター

書誌事項

タイトル別名
  • Informatics Study of Mechanical Properties of Liquid Crystal Elastomers
  • エキショウ エラストマー ノ リキガク トクセイ ニ カンスル インフォマティクス カイセキ

この論文をさがす

説明

<p>Liquid crystal elastomers (LCEs) are a relatively new class of materials that display soft elasticity, that is, they can be deformed without resistance. Furthermore, LCEs show a rapid and accurate response to external stimuli such as electric, magnetic, and thermal fields. For this reason, it is expected to be applied to actuators or sensors. In order to apply these characteristics to devices, we tried to predict the characteristics of LCE by simulation. First of all, we developed an extended coarse-grained LCE model to enable simulation of systems of various architectures. Our model is a hybrid of Gay-Berne particles and Lennard-Jones particles, based on previously reported LCE modeling techniques. By using molecular dynamics (MD) method, the stress-strain curves as the response to an external force were obtained, and soft elasticity was clearly observed. Then, the regression analysis using machine learning (ML) was conducted on the results of the stress-strain curves of the MD simulations. The results indicated that spacing for a room for mobility of mesogenic units in the design variables of LCE molecules affected elasticity. In addition, the R-squared value of regression curve for stress-strain curves was 0.821, which indicates a strong correlation between the MD data and ML results. Finally, the estimation method of molecular structure from coarse-grained model is discussed.</p>

収録刊行物

参考文献 (13)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ