Engineered Myoglobin Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions

この論文をさがす

抄録

<p>Biocatalysis has covered an increasingly important role in the synthesis and manufacturing of pharmaceuticals and other high value compounds. In the interest of expanding the range of synthetically useful reactions accessible via biocatalysts, our group has explored the potential and application of engineered myoglobins for ʻabiologicalʼ carbene transfer catalysis. These transformations provide a direct route for the construction of new carbon-carbon and carbon-heteroatom bonds, including the synthesis of cyclopropane rings, which are key motifs and pharmacophores in many drugs and bioactive natural products. In this award article, we survey the progress made by our group toward the development of myoglobin-based catalysts for asymmetric intermolecular cyclopropanation reactions. The high stereoselectivity exhibited by these biocatalysts in these reactions, combined with their broad substrate scope, scalability, and robustness to high substrate loading and organic cosolvents, contribute to make these systems particularly useful for chemical synthesis and biocatalysis at the preparative scale. Extension of the scope of biocatalytic carbene transfer reactions to include different classes of carbene donor reagents has created new opportunities for the asymmetric synthesis of functionalized cyclopropanes. Furthermore, the integration of myoglobin-catalyzed stereoselective cyclopropanations with chemical diversification of the enzymatic products has furnished attractive chemoenzymatic strategies to access a diverse range of optically active cyclopropane scaffolds of high value for drug discovery, medicinal chemistry, and the synthesis of natural products.</p>

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (20)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ