変形可能な判別波形パターンの学習法
書誌事項
- タイトル別名
-
- Learning Method for Time-Series Shapelet Evolution
説明
IoTの普及によりインフラ・医療・製造などの産業分野では,時系列インスタンスのクラスを機械学習で分類する必要性が高まっている.一方,判別に用いる波形パターン(判別波形パターン)を分類器と同時に学習する手法が,分類性能が高いだけでなく説明性もあるため近年注目を集めている.本論文では,季節性・被験者の慣れ・機械の劣化などにより判別波形パターンが変化することを考慮し,その変形を予測する手法を提案し,各産業分野への有効性を示す.提案手法では,時系列インスタンスとそれらを取得したタイミングやクラスラベルから,判別波形パターンと分類器だけでなく判別波形パターンの変形を予測する回帰モデルも同時に学習する.
収録刊行物
-
- 電子情報通信学会論文誌D 情報・システム
-
電子情報通信学会論文誌D 情報・システム J106-D (5), 328-336, 2023-05-01
The Institute of Electronics, Information and Communication Engineers
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390577354352356864
-
- ISSN
- 18810225
- 18804535
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
-
- 抄録ライセンスフラグ
- 使用不可