診断付き精神疾患会話コーパスを用いたうつ病の重症度自動分類と特徴量分析
書誌事項
- タイトル別名
-
- utomatic Depression Severity Classification and Feature Importance Analysis Using Mental Disease Dialogue Corpus
説明
<p>我々はこれまで、診断や疾患評価、音声とその文字起こしや音声・言語学的アノテーションが付与されたUNDERPIN大規模精神疾患会話コーパスを構築してきた。このコーパスを用いて、うつ病患者の分類実験を行った。分類の際は、健常者・軽症患者・中等度以上の患者・うつ病と診断されたことがあるがテストの評価値で症状のない患者の4分類を設定し、4分類のすべてのペア6つそれぞれで2値分類を行った。結果、軽症・中等度以上の重症度に応じた分類ができること、また現在の症状にかかわらずうつ病になった性質で分類可能であることを確認した。分類に貢献した特徴量の分析では、重症度ごとに異なる特徴量や共通している特徴量を確認できた。今後は、新しい特徴量を追加しての学習や、特徴のもととなった人手のアノテーションを自動付与するシステムを構築したい。</p>
収録刊行物
-
- 人工知能学会全国大会論文集
-
人工知能学会全国大会論文集 JSAI2023 (0), 4Xin150-4Xin150, 2023
一般社団法人 人工知能学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390578283198256768
-
- ISSN
- 27587347
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
-
- 抄録ライセンスフラグ
- 使用不可