Microalgae Detection by Digital Image Processing and Artificial Intelligence
-
- Tangsuksant Watcharin
- Faculty of Engineering, King Mongkut’s University of Technology North Bangkok
-
- Sarakon Pornthep
- Faculty of Engineering, King Mongkut’s University of Technology North Bangkok
説明
This article presents a technical approach to the video computer analysis, to automatically identifying the two most frequently identified microalgae in water supplies. To handle some difficulties encountered in image segmentation problem such as unclear algae boundary and noisy background, we proposed a deep learning-based method for classifiers or localizers to perform microalgae detection and counting process. The system achieves approximately 91% accuracy on Melosira and Oscillatoria detection, which around 4.82 seconds per grid. (Intel Xeon(R) CPU E52667 12 CPU at 2.66GHz and 32.0GB RAM, NVIDIA Quadro K5200 with 2304 CUDA cores). The system can significantly reduce 33.33 - 55.56% of the counting time when compared with the visual inspection of manual methods, and eliminate the error due to the human fatigue.
収録刊行物
-
- 人工生命とロボットに関する国際会議予稿集
-
人工生命とロボットに関する国際会議予稿集 28 852-857, 2023-02-09
株式会社ALife Robotics
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390578283210981504
-
- ISSN
- 21887829
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
-
- 抄録ライセンスフラグ
- 使用不可