膀胱鏡画像におけるtiny-YOLOを用いた腫瘍検出

  • 牟田口 淳
    九州大学病院泌尿器科
  • 小田 昌宏
    名古屋大学情報連携推進本部情報戦略室 名古屋大学大学院情報学研究科
  • 猪口 淳一
    九州大学病院泌尿器科
  • 森 健策
    名古屋大学大学院情報学研究科 国立情報学研究所医療ビッグデータ研究センター
  • 江藤 正俊
    九州大学病院泌尿器科

この論文をさがす

説明

<p>【背景】膀胱癌は経尿道手術後に再発が多い腫瘍であり、膀胱鏡での腫瘍の見落としが原因とされている。内視鏡での観察は、従来の白色光(WLI)の他に、NBIを使用するが、いずれの腫瘍検出精度は検者の技量・経験に依存するため、検査の再現性・客観性が少ないことが課題である。近年、人工知能(AI)が多くの医療分野で活用されており、AIによる検査は、客観性・再現性を持った上で、エキスパートレベルと同程度の診断能を持つ可能性があるとされている。今回、WLI/NBI膀胱鏡画像を用いて、AIによる腫瘍検出の精度を検証した。【方法】2019年から2021年まで、経尿道的膀胱腫瘍切除術(TURBT)の際に、WLI/NBIを用いて観察を行った症例の手術動画から膀胱鏡画像を作成し、腫瘍を含む画像を腫瘍画像、腫瘍を含まない画像を正常画像と定義した。腫瘍画像内の膀胱腫瘍を矩形でアノテーションを行い、テストデータ用の画像を用いてAIによる感度、特異度、陽性的中率を評価した。AIでの物体検出はtiny-YOLOを用い、腫瘍検出精度の検証を行った。【結果】WLIとNBIから、それぞれ腫瘍画像をそれぞれtiny-YOLOで学習を行い、腫瘍画像(WLI: 525枚、NBI:219枚)と正常画像(WLI:98枚、NBI:108枚)で精度検証を行った。AIによる物体検出の感度/特異度/陽性的中率は、WLIで87.8%/88.8%/97.7%、NBIで82.2%/81.4%/90.0%であった。【結論】膀胱鏡画像において、AIにより比較的良好に腫瘍検出が可能であった。更なる精度改善、リアルタイム検出への課題について、文献的考察を加え報告する。</p>

収録刊行物

  • 生体医工学

    生体医工学 Annual61 (Abstract), 255_2-255_2, 2023

    公益社団法人 日本生体医工学会

詳細情報 詳細情報について

  • CRID
    1390580295544030976
  • DOI
    10.11239/jsmbe.annual61.255_2
  • ISSN
    18814379
    1347443X
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ