Nature of the Intracellular-contrast-enhancing Fat-saturated T1-weighted Gradient-echo (ICE-TIGRE) Sequence: A Fat-suppressed T1-weighted Technique with Motion-sensitised Driven-equilibrium for Improved Contrast Enhancement in Liver Imaging

  • Nishihara Takashi
    Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation, Kashiwa, Chiba, Japan
  • Nakamura Yuko
    Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
  • Yoshizawa Nobuyuki
    Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation, Kashiwa, Chiba, Japan
  • Takizawa Masahiro
    Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation, Kashiwa, Chiba, Japan
  • Shirai Toru
    Medical Systems Research & Development Center, FUJIFILM Corporation, Minato-ku, Tokyo, Japan
  • Higaki Toru
    Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Hiroshima, Japan
  • Honda Yukiko
    Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
  • Awai Kazuo
    Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
  • Bito Yoshitaka
    Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation, Kashiwa, Chiba, Japan

抄録

<p>Gadoxetic acid is both an extracellular- and hepatocyte-specific contrast agent. Signals from the extracellular space may lower the contrast between lesions and the surrounding hepatic parenchyma. To improve hepatocyte-specific enhancement, we developed an intracellular contrast-enhancing fat-saturated T1-weighted gradient-echo nature of the sequence (ICE-TIGRE). It incorporates the motion-sensitized driven-equilibrium (MSDE) pulse to suppress signals from the blood flow. We investigated the optimal ICE-TIGRE scanning parameters, i.e., the order of the MSDE and the fat saturation pulses, the duration time, and the b value of the MSDE pulse, using a phantom and three volunteers without applying gadoxetic acid. ICE-TIGRE successfully increased the contrast between the liver parenchyma and the portal vein. To maintain fat saturation, the preparation pulse order should be MSDE–fat saturation. A duration time of 21 ms should be applied to minimize the effect of the T2 factor on the T1 contrast, and a b value of 60 s/mm2 should be applied to maximize the diffusion contrast for ICE-TIGRE with the imaging system used in this study.</p>

収録刊行物

参考文献 (10)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ