THE RATES OF THE $L^p$-CONVERGENCE OF THE EULER-MARUYAMA AND WONG-ZAKAI APPROXIMATIONS OF PATH-DEPENDENT STOCHASTIC DIFFERENTIAL EQUATIONS UNDER THE LIPSCHITZ CONDITION

この論文をさがす

説明

<p>We consider the rates of the $L^p$-convergence of the Euler-Maruyama and Wong-Zakai approximations of path-dependent stochastic differential equations under the Lipschitz condition on the coefficients. By a transformation, the stochastic differential equations of Markovian type with reflecting boundary condition on sufficiently good domains are to be associated with the equations concerned in the present paper. The obtained rates of the $L^p$-convergence are the same as those in the case of the stochastic differential equations of Markovian type without boundaries.</p>

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (17)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1390581766252203136
  • DOI
    10.2748/tmj/1520564419
  • ISSN
    2186585X
    00408735
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • JaLC
    • Crossref
    • KAKEN
    • OpenAIRE
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ