Incentive Mechanism for Maximizing Social Surplus in Cross-Device Federated Learning
-
- Shotaro Kitano
- University of Fukui (Japan)
-
- Takuji Tachibana
- University of Fukui (Japan)
説明
In cross-device federated learning, mobile devices collabo<br />rate on machine learning via a central server without sharing<br /> data. In this paper, we propose an incentive mechanism for<br /> maximizing social surplus. In this mechanism, a distributed<br /> algorithm is utilized in each mobile device.<br /> We proposed an incentive mechanism for maximizing so<br />cial surplus. From numerical examples, we found that our proposed method can maximize the social surplus without sharing any information.
収録刊行物
-
- IEICE Proceeding Series
-
IEICE Proceeding Series 85 P2-13-, 2024-11-25
The Institute of Electronics, Information and Communication Engineers
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390584088487551872
-
- ISSN
- 21885079
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
-
- 抄録ライセンスフラグ
- 使用不可