- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
-
- TAMURA Hiroto
- 東京大学大学院 工学系研究科
-
- KOHNO Takashi
- 東京大学生産技術研究所 情報・エレクトロニクス系部門
-
- AIHARA Kazuyuki
- 東京大学生産技術研究所 情報・エレクトロニクス系部門
Bibliographic Information
- Other Title
-
- 深層カオスニューラルネットワークのためのReLUカオスニューロンモデル
Search this article
Description
<p>A deep neural network (DNN) has been in the center of attention in the field of machine learning, and the chaotic neuron and chaotic neural network (ChNN) models have been in the spotlight in computational neuroscience and nonlinear science. However, there are no studies on deep ChNN. In order to fill this gap, we propose a ReLU (rectifier linear unit) chaotic neuron model, which is necessary for the application of the chaotic neuron model to DNN with ReLU activation. We also show that even a single ReLU chaotic neuron can generate dynamically changing outputs in spite of the simplicity of ReLU.</p>
Journal
-
- SEISAN KENKYU
-
SEISAN KENKYU 70 (3), 183-185, 2018-05-01
Institute of Industrial Science The University of Tokyo
- Tweet
Details 詳細情報について
-
- CRID
- 1390845712966096128
-
- NII Article ID
- 130007377753
-
- NII Book ID
- AN00127075
-
- ISSN
- 18812058
- 0037105X
-
- NDL BIB ID
- 029105483
-
- Text Lang
- en
-
- Data Source
-
- JaLC
- NDL Search
- CiNii Articles
-
- Abstract License Flag
- Disallowed