物体認識のための畳み込みニューラルネットワークの研究動向

書誌事項

タイトル別名
  • Recent Advances in Convolutional Neural Networks for Object Recognition

説明

2012年の画像認識コンペティションILSVRCにおけるAlexNetの登場以降,画像認識においては畳み込みニューラルネットワーク(CNN)を用いることがデファクトスタンダードとなった.ILSVRCでは毎年のように新たなCNNのモデルが提案され,一貫して認識精度の向上に寄与してきた.CNNは画像分類だけではなく,セグメンテーションや物体検出など様々なタスクを解くためのベースネットワークとしても広く利用されてきている.本論文では,AlexNet以降の代表的なCNNの変遷を振り返るとともに,近年提案されている様々なCNNの改良手法についてサーベイを行い,それらを幾つかのアプローチに分類し,解説する.更に,代表的なモデルについて複数のデータセットを用いて学習及び網羅的な精度評価を行い,各モデルの精度及び学習時間の傾向について議論を行う.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1390845713054478080
  • DOI
    10.14923/transinfj.2018jdr0002
  • ISSN
    18810225
    18804535
  • 本文言語コード
    ja
  • データソース種別
    • JaLC
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ