物体認識のための畳み込みニューラルネットワークの研究動向
書誌事項
- タイトル別名
-
- Recent Advances in Convolutional Neural Networks for Object Recognition
説明
2012年の画像認識コンペティションILSVRCにおけるAlexNetの登場以降,画像認識においては畳み込みニューラルネットワーク(CNN)を用いることがデファクトスタンダードとなった.ILSVRCでは毎年のように新たなCNNのモデルが提案され,一貫して認識精度の向上に寄与してきた.CNNは画像分類だけではなく,セグメンテーションや物体検出など様々なタスクを解くためのベースネットワークとしても広く利用されてきている.本論文では,AlexNet以降の代表的なCNNの変遷を振り返るとともに,近年提案されている様々なCNNの改良手法についてサーベイを行い,それらを幾つかのアプローチに分類し,解説する.更に,代表的なモデルについて複数のデータセットを用いて学習及び網羅的な精度評価を行い,各モデルの精度及び学習時間の傾向について議論を行う.
収録刊行物
-
- 電子情報通信学会論文誌D 情報・システム
-
電子情報通信学会論文誌D 情報・システム J102-D (3), 203-225, 2019-03-01
The Institute of Electronics, Information and Communication Engineers
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390845713054478080
-
- ISSN
- 18810225
- 18804535
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
-
- 抄録ライセンスフラグ
- 使用不可