A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot
-
- Ojeda Ismael Baira
- Center for Playware, Department of Electrical Engineering, Technical University of Denmark
-
- Tolu Silvia
- Center for Playware, Department of Electrical Engineering, Technical University of Denmark
-
- Pacheco Moisés
- Center for Playware, Department of Electrical Engineering, Technical University of Denmark
-
- Christensen David Johan
- Center for Playware, Department of Electrical Engineering, Technical University of Denmark
-
- Lund Henrik Hautop
- Center for Playware, Department of Electrical Engineering, Technical University of Denmark
説明
We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models implemented on the SpiNNaker platform, showing promising performance and robustness results.
収録刊行物
-
- 人工生命とロボットに関する国際会議予稿集
-
人工生命とロボットに関する国際会議予稿集 22 33-36, 2017-01-19
株式会社ALife Robotics
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390845713073704320
-
- ISSN
- 21887829
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
-
- 抄録ライセンスフラグ
- 使用不可