Recommendation System based on Generative Adversarial Network \\with Graph Convolutional Layers
-
- SASAGAWA Takato
- University of Tsukuba
-
- KAWAI Shin
- University of Tsukuba
-
- NOBUHARA Hajime
- University of Tsukuba
Bibliographic Information
- Other Title
-
- グラフ畳み込み層を有する敵対的生成ネットワークによる推薦システムの提案
Description
<p>A Graph Convolutional Generative Adversarial Network (GCGAN) is proposed to effectively recommend to new users or items. To maintain scalability, the discriminator is improved to capture latent features of users and items by using graph convolution from a minibatch size bipartite graph. Through the experiment using MovieLens dataset, it is confirmed the effectiveness of the proposed GCGAN compared with the conventional methods.</p>
Journal
-
- Proceedings of the Annual Conference of JSAI
-
Proceedings of the Annual Conference of JSAI JSAI2019 (0), 1J2J601-1J2J601, 2019
The Japanese Society for Artificial Intelligence
- Tweet
Details 詳細情報について
-
- CRID
- 1390845713074304128
-
- NII Article ID
- 130007658339
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- CiNii Articles
-
- Abstract License Flag
- Disallowed