An equivalence between log-sum-exp approximation and entropy regularization in <i>K</i>-means clustering
-
- Inoue Kohei
- Faculty of Design, Kyushu University
-
- Hara Kenji
- Faculty of Design, Kyushu University
説明
<p>In this paper, we show an equivalence between log-sum-exp approximation and entropy regularization in K-means clustering, which is a well-known algorithm for partitional clustering. We derive an identical equation for updating centroids of clusters from the two formulations. Additionally, we derive an alternative equation suitable for another formulation of entropy regularization, maximum entropy method. We also show experimental results which support the theoretical results.</p>
収録刊行物
-
- Nonlinear Theory and Its Applications, IEICE
-
Nonlinear Theory and Its Applications, IEICE 11 (4), 446-453, 2020
一般社団法人 電子情報通信学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390848647560842752
-
- NII論文ID
- 130007921448
-
- ISSN
- 21854106
-
- HANDLE
- 2324/4113192
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- IRDB
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可