-
- Farnik Michał
- Faculty of Mathematics and Computer Science Jagiellonian University
-
- Jelonek Zbigniew
- Instytut Matematyczny Polska Akademia Nauk
-
- Ruas Maria Aparecida Soares
- Departamento de Matemática ICMC-USP
書誌事項
- タイトル別名
-
- Finite 𝒜-determinacy of generic homogeneous map germs in ℂ<sup>3</sup>
- Finite $\mathcal{A}$-determinacy of generic homogeneous map germs in $\mathbb{C}^3$
この論文をさがす
説明
<p>Denote by 𝐻(𝑑1, 𝑑2, 𝑑3) the set of all homogeneous polynomial mappings 𝐹 = (𝑓1, 𝑓2, 𝑓3) : ℂ3 → ℂ3, such that deg 𝑓𝑖 = 𝑑𝑖. We show that if gcd(𝑑𝑖, 𝑑𝑗) ≤ 2 for 1 ≤ 𝑖 < 𝑗 ≤ 3 and gcd(𝑑1, 𝑑2, 𝑑3) = 1, then there is a non-empty Zariski open subset 𝑈 ⊂ 𝐻(𝑑1, 𝑑2, 𝑑3) such that for every mapping 𝐹 ∈ 𝑈 the map germ (𝐹, 0) is 𝒜-finitely determined. Moreover, in this case we compute the number of discrete singularities (0-stable singularities) of a generic mapping (𝑓1, 𝑓2, 𝑓3): ℂ3 → ℂ3, where deg 𝑓𝑖 = 𝑑𝑖.</p>
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 73 (1), 211-220, 2021
一般社団法人 日本数学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390849931331350656
-
- NII論文ID
- 130007973749
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL書誌ID
- 031231383
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可