Development of Landing Rebound Reduction Mechanism Utilizing Magnetic Damper for Multicopters

  • Niwa Kazuki
    Department of Aerospace Engineering, Nagoya University
  • Hara Susumu
    Department of Aerospace Engineering, Nagoya University
  • Miyata Kikuko
    Department of Vehicle and Mechanical Engineering, Faculty of Science and Technology, Meijo University

この論文をさがす

説明

<p>This paper proposes a rebound reduction mechanism for landing multicopter. Multicopter applications in the logistics industry are expected to increase owing to the aging of logistics drivers and the decline in their numbers. Currently, most multicopters land on their designated landing pads. However, these pads are not always available at the destination, and landing on rough terrain is needed in such cases. This paper describes the development of a mechanism to reduce rebound during landing, which can easily cause tipping over. The mechanism should be lightweight to ensure that battery power is conserved and that payload transport capability is increased. Simultaneously, the mechanism should be robust against environmental variations because multicopters are used outdoors and under various temperature conditions. A mechanism consisting of a spring and a magnetic damper is proposed and is modeled using multibody dynamics. It is known that the magnetic damper possesses robustness against temperature variations. Moreover, this paper presents the design parameter optimization for the proposed mechanism considering both the rebound reduction effect and weight reduction. The spring constant and viscous damping coefficient of the proposed mechanism are determined via numerical simulations with the electromagnetic simulator JMAG. The effectiveness of the proposed mechanism is verified via vertical freefall simulations. A simple experimental system is used to evaluate the mechanism, and the experimental results indicate that the mechanism is effective.</p>

収録刊行物

参考文献 (10)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ