Introduction to hierarchical Bayesian modeling for experimental psychologists: A tutorial using R and Stan
-
- Muto Hiroyuki
- Kokoro Research Center, Kyoto University
Bibliographic Information
- Other Title
-
- 実験心理学者のための階層ベイズモデリング入門―RとStanによるチュートリアル―
- ジッケン シンリガクシャ ノ タメ ノ カイソウ ベイズモデリング ニュウモン : R ト Stan ニ ヨル チュートリアル
Search this article
Description
<p>Hierarchical Bayesian modeling is a powerful and promising tool that aids experimental psychologists to flexibly build and evaluate interpretable statistical models that consider inter-individual and inter-trial variability. This article offers several examples of hierarchical Bayesian modeling to introduce the idea and to show its implementation with R and Stan. As a tutorial, it uses data from well-known experimental paradigms in perceptual and cognitive psychology. Specifically, I present linear models for correct response time data from a mental rotation task, probit models for binary choice data from two psychophysical tasks, and drift diffusion models for both response time and binary choice data from an Eriksen flanker task. The R and Stan scripts and data are available on the Open Science Framework repository at https://doi.org/10.17605/osf.io/2zxs6. The importance of model selection and the potential functions of open data practices in statistical modeling are also briefly discussed.</p>
Journal
-
- The Japanese Journal of Psychonomic Science
-
The Japanese Journal of Psychonomic Science 39 (2), 196-212, 2021-03-31
The Japanese Psychonomic Society
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390851242928528384
-
- NII Article ID
- 130008049439
-
- NII Book ID
- AN00006194
-
- ISSN
- 21887977
- 02877651
-
- HANDLE
- 2433/277508
-
- NDL BIB ID
- 031532657
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- IRDB
- NDL Search
- CiNii Articles
- OpenAIRE
- Crossref
-
- Abstract License Flag
- Disallowed