EMULATING RAINFALL-RUNOFF-INUNDATION MODEL THROUGH ENSEMBLE LEARNING OF MULTIPLE REGULARIZED REGRESSORS
-
- KOTSUKI Shunji
- 千葉大学 環境リモートセンシング研究センター
-
- MOMOI Masahiro
- DoerResearch株式会社
-
- KIKUCHI Ryota
- 京都大学 産官学連携本部
-
- WATANABE Satoshi
- 東京大学 大学院工学系研究科
-
- YAMADA Masafumi
- 京都大学 防災研究所
-
- ABE Shiori
- 三井共同建設コンサルタント株式会社 河川・砂防事業部 水文・水理解析部
-
- WATANUKI Akira
- 株式会社建設環境研究所 河川計画部
Bibliographic Information
- Other Title
-
- 回帰学習器のアンサンブル学習による降雨洪水氾濫モデル・エミュレータ
Description
<p> Recent progress in high-performance computing have enabled meteorological and climate communities to perform large-ensemble weather/climate predictions. To maximize the values of these large ensemble weather/climate prediction data, this study aims to develop a computationally-inexpensive machine that emulates a physics-based rainfall-runoff-inundation model. This emulator predicts maximum inundation depth from the spatial and temporal rainfall data for individual events. We first developed three types of regularized regressors, and then used the Random Forest to conduct ensemble learning of those regressors. This machine structure aims to have two characteristics: preventing over-learning for the underdetermined problem, and stacking multiple weak regressors for the non-linear transformation. There was almost no difference in the predicted accuracy of the maximum inundation depth between three regressors. Regressors tended to underestimate deep maximum inundation depths. The Random Forest significantly improved the prediction accuracy by stacking the weak regressors. In particular, the underestimated inundation depth seen in regularized regressors was greatly improved in the Random Forest.</p>
Journal
-
- Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering)
-
Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 76 (2), I_367-I_372, 2020
Japan Society of Civil Engineers
- Tweet
Details 詳細情報について
-
- CRID
- 1390853179620228608
-
- NII Article ID
- 130008122613
-
- ISSN
- 2185467X
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed