- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Development of High-Accuracy Defect Detection Algorithm for X-Ray Welding Image Inspection under Strong Noise, Low Contrast and Few Samples
-
- IWATA Kenji
- (国研)産業技術総合研究所 人工知能研究センター
-
- MATSUMOTO Tomohiro
- 三菱重工業(株) ICTソリューション本部 CIS部
-
- AOYAMA Keiko
- 三菱重工業(株) 総合研究所 電気・応用物理研究部
-
- KAJIKAWA Keisuke
- 三菱重工業(株) 総合研究所 電気・応用物理研究部
-
- GOTO Koji
- 三菱重工業(株) 原子力セグメント 品質保証部
-
- SUGIMOTO Kiichi
- 三菱重工業(株) ICTソリューション本部 CIS部
Bibliographic Information
- Other Title
-
- 高ノイズ・低コントラスト・少数サンプル下におけるX線溶接画像検査の高精度欠陥検出アルゴリズムの開発
Search this article
Description
<p>We have developed an algorithm to accurately detect unclear defects in X-ray image inspection of thick welded parts under low contrast, and strong noise. Statistical Reach Features (SRF) and High-order Local Autocorrelation (HLAC) are used as noise-robust feature extraction methods. In order to deal with a small number of defect samples, pseudo-defect data with actual noise is used for machine learning. When the discriminator is optimized for zero missing, the over-detection is significantly reduced, and the method is ready for practical application.</p>
Journal
-
- Journal of the Japan Society for Precision Engineering
-
Journal of the Japan Society for Precision Engineering 87 (12), 1003-1007, 2021-12-05
The Japan Society for Precision Engineering
- Tweet
Details 詳細情報について
-
- CRID
- 1390853257564641792
-
- NII Article ID
- 130008124988
-
- ISSN
- 1882675X
- 09120289
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed