二流体フラットスプレー冷却実験における移動高温鋼材の非定常沸騰熱伝達特性

  • 仁井谷 洋
    佐賀大学大学院工学系研究科 日本製鉄(株)技術開発本部プロセス研究所
  • 光武 雄一
    佐賀大学海洋エネルギー研究センター

書誌事項

タイトル別名
  • Transient Boiling Heat Transfer Characteristics of a Moving Hot Surface during Two-fluid Flat Spray Quenching
  • ニリュウタイ フラットスプレー レイキャク ジッケン ニ オケル イドウ コウオン コウザイ ノ ヒテイジョウ フットウ ネツ デンタツ トクセイ

この論文をさがす

抄録

<p>In the hard cooling process of steel, heat flux and temperature fluctuations are so large due to the wetting that it is difficult to measure unsteady cooling phenomena. In this study, we experimentally analyzed the detailed heat transfer behavior of continuous casting secondary cooling of a moving system using the improved IHCP (Inverse heat conduction problem) analysis with the Laplace transform technique developed in the previous paper. The test piece was a SUS304 rotor with a thickness of 10 mm and an outer diameter of 136 mm, which was heated to 880°C, rotated at a peripheral speed of 0.9 to 8.0 m/min, and cooled from above with a flat air mist spray. Thermocouples were installed at two points 1.5 mm and 3.5 mm from the surface. As a result of the analysis, under the conditions of the film boiling region, the surface heat flux qw could be expressed as qw / qw,peak = (W / Wpeak)0.57 using the spray water flux W. However, after the start of wetting, cooling continued even on the downstream side in the moving direction where the water droplets did not collide directly. In the nucleate boiling region and the film boiling region, the average heat flux when passing through the spray did not change due to the change in casting speed. However, the wetting start temperature became higher as the casting speed becomes slower.</p>

収録刊行物

  • 鉄と鋼

    鉄と鋼 108 (1), 1-10, 2022

    一般社団法人 日本鉄鋼協会

参考文献 (16)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ