Properties of a Rubin's orthogonal function which is a linear combination of two inner functions
説明
q'J is called a Rudin's ( orthogonal) function if q'J is a function in Hx and the different nonnegative powers of cf> arc orthogonal in H2. \Yhcn cf> is a multiple of an inner function and ¢(0) = 0, cf> is a Iludin's function. Sundberg and Bishop showed that a Iludin's function is not necessarily a multiple of an inner function. \Ye study a Iludin's function which is a linear combination of two inner functions or a polynomial of an inner function.
収録刊行物
-
- Hokkaido University Preprint Series in Mathematics
-
Hokkaido University Preprint Series in Mathematics 550 1-9, 2002-04
Department of Mathematics, Hokkaido University
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390853649725388928
-
- NII論文ID
- 120006456851
-
- DOI
- 10.14943/83695
-
- HANDLE
- 2115/69299
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用可