Properties of a Rubin's orthogonal function which is a linear combination of two inner functions

説明

q'J is called a Rudin's ( orthogonal) function if q'J is a function in Hx and the different nonnegative powers of cf> arc orthogonal in H2. \Yhcn cf> is a multiple of an inner function and ¢(0) = 0, cf> is a Iludin's function. Sundberg and Bishop showed that a Iludin's function is not necessarily a multiple of an inner function. \Ye study a Iludin's function which is a linear combination of two inner functions or a polynomial of an inner function.

収録刊行物

キーワード

詳細情報 詳細情報について

  • CRID
    1390853649725388928
  • NII論文ID
    120006456851
  • DOI
    10.14943/83695
  • HANDLE
    2115/69299
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ