Totally free arrangements of hyperplanes

説明

A central arrangement $\A$ of hyperplanes in an $\ell$-dimensional vector space $V$ is said to be totally free}if a multiarrangement if $(\A, m)$ is free for any multiplicity $ m : \A\rightarrow \Z_{> 0}$. It has been known that $\A$ is totally free whenever $\ell \le 2$. In this article, we will prove that there does not exist any totally free arrangement other than the obvious ones, that is, a product of one-dimensional arrangements and two-dimensional ones.

収録刊行物

キーワード

詳細情報 詳細情報について

  • CRID
    1390853649725554560
  • NII論文ID
    120006459611
  • DOI
    10.14943/84064
  • HANDLE
    2115/69722
  • 本文言語コード
    en
  • 資料種別
    departmental bulletin paper
  • データソース種別
    • JaLC
    • IRDB
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ