この論文をさがす
説明
A generator of the reduced KO-group of the real projective space of dimension n is related to the canonical line bundle γ. In the present paper, we will prove that for a finite group G of odd order and a real G-representation U of dimension 2n, in the reduced G-equivariant KO-group of the real projective space associated with the G-representation R ⊕ U, the element 2n+2[γ] is equal to zero.
収録刊行物
-
- Mathematical Journal of Okayama University
-
Mathematical Journal of Okayama University 57 (1), 111-122, 2015-01
Department of Mathematics, Faculty of Science, Okayama University
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390853649753403904
-
- NII論文ID
- 120005525344
-
- NII書誌ID
- AA00723502
-
- ISSN
- 00301566
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles