Machine Learning Based Metal Object Detection for Wireless Power Transfer Using Differential Coils
-
- Gong Yunyi
- Graduate School of information Science and Technology, Hokkaido University
-
- Otomo Yoshitsugu
- Graduate School of information Science and Technology, Hokkaido University
-
- Igarashi Hajime
- Graduate School of information Science and Technology, Hokkaido University
この論文をさがす
説明
<p>This paper presents the machine learning-based detection of foreign metal object for the wireless power transfer device including differential coils. To test the proposed method, the differential voltages are computed using finite element method for about 1500 cases with and without an aluminum cylinder at driving frequency of 85 kHz considering misalignment between the primal and secondary coils. It has been shown that gradient boosting decision tree and random forests classifier have the accuracy over 90% when input voltages and differential voltages are inputted together.</p>
収録刊行物
-
- 日本シミュレーション学会英文誌
-
日本シミュレーション学会英文誌 9 (1), 20-29, 2022
一般社団法人 日本シミュレーション学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390853879727617920
-
- NII論文ID
- 130008149338
-
- ISSN
- 21885303
-
- HANDLE
- 2115/84953
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- IRDB
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可