-
- Kawasaki Morimichi
- Department of Mathematical Sciences, Aoyama Gakuin University
-
- Orita Ryuma
- Graduate School of Science and Technology, Niigata University
この論文をさがす
説明
<p>(Non-)displaceability of fibers of integrable systems has been an important problem in symplectic geometry. In this paper, for a large class of classical Liouville integrable systems containing the Lagrangian top, the Kovalevskaya top and the C. Neumann problem, we find a non-displaceable fiber for each of them. Moreover, we show that the non-displaceable fiber which we detect is the unique fiber which is non-displaceable from the zero-section. As a special case of this result, we also show the existence of a singular level set of a convex Hamiltonian, which is non-displaceable from the zero-section. To prove these results, we use the notion of superheaviness introduced by Entov and Polterovich.</p>
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 74 (3), 829-847, 2022
一般社団法人 日本数学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390855765229958272
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL書誌ID
- 032288871
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDL
- Crossref
- KAKEN
-
- 抄録ライセンスフラグ
- 使用不可