LATE FUSION MODEL FOR ESTIMATING WINTER ROAD SURFACE CONDITIONS BY INTEGRATING MULTIMPLE IN-VEHICLE SENSOR DATA
-
- ISHIZUKI Masamu
- 北海道大学 大学院工学院 北方圏環境政策工学専攻
-
- TAKAHASHI Sho
- 北海道大学 大学院工学研究院 先端モビリティ工学研究室
-
- HAGIWARA Toru
- 北海道大学 大学院工学研究院 先端モビリティ工学研究室
-
- ISHII Keita
- 株式会社ブリヂストン デジタルAI・IoT企画開発部
-
- IWASAKI Yuji
- 株式会社ブリヂストン デジタルAI・IoT企画開発部
-
- MORI Teppei
- 株式会社ブリヂストン デジタルAI・IoT企画開発部
-
- HANATSUKA Yasushi
- 株式会社ブリヂストン デジタルAI・IoT企画開発部
Bibliographic Information
- Other Title
-
- 複数の車載センサーデータを統合した冬期の路面状態のLate Fusionによる推定モデル
Description
<p>This paper proposes a novel method for estimating road surface conditions in winter by integrating data from multiple in-vehicle sensors. The proposed method is a multimodal model consisting of multiple discriminators that estimate road surface conditions from a camera, in-tire accelerometer, road surface thermometer, and microphone, and a discriminator that combines their outputs, road surface condition probabilities. The road surfaces to be estimated are the six road surfaces used in road management: dry, slightlywet, wet, slushy, icy, and snowy. The proposed method has been validated by utilizing actual data which are obtained from real-vehicle experiments on public winter roads, and its accuracy is shown to be superior to that of conventional methods.</p>
Journal
-
- Artificial Intelligence and Data Science
-
Artificial Intelligence and Data Science 3 (J2), 642-649, 2022
Japan Society of Civil Engineers
- Tweet
Details 詳細情報について
-
- CRID
- 1390857063645679488
-
- ISSN
- 24359262
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- KAKEN
-
- Abstract License Flag
- Disallowed