Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems

  • Okuda Kensuke
    Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University
  • Takashima Ippei
    Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University
  • Takagi Akira
    Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University

この論文をさがす

説明

<p>Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.</p>

収録刊行物

参考文献 (86)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ