書誌事項
- タイトル別名
-
- Sim2Real LiDAR Segmentation with Synthetic Raydrop Noise
説明
<p>In 3D scene understanding tasks using LiDAR data, constructing training data poses a challenge due to its high annotation cost. To this end, annotation-free simulator-based training has recently been gaining attention, while the domain gap between simulators and real environments often leads to decreased generalization performance. This paper introduces a Sim2Real domain adaptation method that mitigates the domain gap by reproducing realistic raydrop noise onto labeled simulation data using deep generative models, enhancing its applicability to real-world scenarios. We demonstrate the effectiveness of our approach in multiple segmentation tasks.</p>
収録刊行物
-
- ロボティクス・メカトロニクス講演会講演概要集
-
ロボティクス・メカトロニクス講演会講演概要集 2024 (0), 1P1-R10-, 2024
一般社団法人 日本機械学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390865574479030656
-
- ISSN
- 24243124
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
-
- 抄録ライセンスフラグ
- 使用不可