書誌事項
- タイトル別名
-
- Detection of Abnormal Regions in a Field by Semantic Segmentation Using Remote Sensing Data
この論文をさがす
説明
<p>In recent years, “smart agriculture,” which introduces ICT into agriculture to improve the efficiency, automation, and productivity of agricultural work, is attracting attention. For advanced smart agriculture, this paper proposes a semantic segmentation model to detect and classify abnormal regions in a field using satellite or aerial images. The performance evaluation of the proposed model is conducted for the Agriculture-Vision Challenge Dataset, a dataset of aerial images of fields and abnormal regions. The results show that the proposed model can detect abnormal regions with higher performance than conventional deep learning models.</p>
収録刊行物
-
- システム制御情報学会論文誌
-
システム制御情報学会論文誌 37 (11), 275-282, 2024-11-15
一般社団法人 システム制御情報学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390866183039117056
-
- ISSN
- 2185811X
- 13425668
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
-
- 抄録ライセンスフラグ
- 使用不可