書誌事項
- タイトル別名
-
- Estimation of Organ State utilizing Deep Learning Tiny-YOLOv3 and Fixed Lag Smoothing Motion Filter
説明
<p>In this research, we proposed a robotic motion control framework that can detect kidney in real-time by utilizing deep learning, and evaluate the accuracy of automatically acquiring and maintaining ultrasound diagnostic images of kidney. Furthermore, we performed object detection experiments using a model that was generated by a kidney phantom, estimated the state of renal phantom motion.</p><p>The novelty of our method is the framework of the combination of the deep learning tiny-YOLOv3 model and filtering considering the influence of speckle noise in an ultrasound image. In our method, the filtering is determined to incorporate the center position of where the object is detected, and two types of filters are adopted.</p>
収録刊行物
-
- ロボティクス・メカトロニクス講演会講演概要集
-
ロボティクス・メカトロニクス講演会講演概要集 2020 (0), 2A1-E02-, 2020
一般社団法人 日本機械学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1391693801405321216
-
- NII論文ID
- 130007943896
-
- ISSN
- 24243124
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可