Two-Fluid Model Approach for Transient Analysis of Free-Surface-Pressurized Flows
Bibliographic Information
- Other Title
-
- 二流体モデルによる開閉水路共存系流れの過渡現象解析
- 2リュウタイ モデル ニ ヨル カイヘイ スイロ キョウゾンケイ ナガレ ノ カト ゲンショウ カイセキ
- 二流体モデルによる開閉水路共存系流れの過渡現象解析
Search this article
Abstract
A new computational model is developed here to analyze the influence of entrapped air on free-surface-pressurized flows. A virtual slot with ceiling on the top of the pipe is introduced to treat a separated gas-liquid flow. This model is a modified model of Preissmann's and is applicable not only to open channel flow and closed conduit flow but also pressurized flow with entrapped air. Compared to experimental results using the model of 1/50 scale, the calculation results show that the entrapped air in horizontal pipe advances the time of pressure rising and makes the maximum value of pressure higher. The escape flow of entrapped air at dropshaft is caused by surface waves pushing the air in the horizontal pipe, and then the pipe slope affects the flow rate of air. The air compressibility has less effect on the transient separated air-water flow in the pipe.
Journal
-
- 日本機械学会論文集. B編
-
日本機械学会論文集. B編 67 (659), 1742-1748, 2001-07
The Japan Society of Mechanical Engineers