Effect of Quantum Spin Fluctuation on Scalar Chiral Ordering in the Kondo Lattice Model on a Triangular Lattice

この論文をさがす

説明

Spin scalar chiral ordering gives rise to nontrivial topological characters and peculiar transport properties. We here examine how quantum spin fluctuations affect the spin scalar chiral ordering in itinerant electron systems. We take the Kondo lattice model on a triangular lattice, and perform the linear spin wave analysis in the Chern insulator phases with spin scalar chiral ordering obtained in the case that the localized spins are classical. We find that, although the quantum fluctuation destabilizes the spin scalar chiral phase at 3/4 filling that originates from the perfect nesting of Fermi surface, it retains the phase at 1/4 filling that is induced by an effective positive biquadratic interaction. The reduction of the ordered magnetic moment by the zero-point quantum fluctuation is considerably small, compared with those in spin-only systems. The results suggest that the Chern insulator at 1/4 filling remains robust under quantum fluctuations.

5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jpn

収録刊行物

被引用文献 (4)*注記

もっと見る

参考文献 (26)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ