- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Locating Fold Bifurcation Points Using Subspace Shooting
-
- ITO Hidetaka
- Department of Electrical Engineering, Kansai University
-
- YOSHIMURA Masanori
- Department of Electrical Engineering, Kansai University
-
- KUMAMOTO Akira
- Department of Electrical Engineering, Kansai University
Bibliographic Information
- Other Title
-
- 部分空間シューティング法を用いたフォールド分岐点の計算
Search this article
Description
非線形振動系の周期解を求める数値解法の一つとしてポアンカレ写像の不動点をニュートン法によって求める方法 (シューティング法) が広く知られているが, この方法は, 偏微分方程式系の離散化などに伴う高次元系に対しては, 変分系に関する計算量が膨大となるため実用的でないことがある. しかし, 求める周期解の不安定多様体の次元数が十分小さい場合には, ニュートン法における初期値の修正量を低次元の部分空間内のベクトルで近似し, さらに過渡解を用いる初期値の修正を組み合わせる手法 (部分空間シューティング法) [1〜3]により, 精度を損なうことなく効率良く周期解を求めることができる. 一方, 周期解のフォールド分岐点の計算には, 周期解を与える条件と分岐の条件を連立させ, 通常の (全空間でのニュートン法を用いる) シューティング法によって未知数 (分岐点におけるポアンカレ写像の不動点とパラメータ値) を求める手法 [4] がよく用いられるが, この手法と部分空間シューティング法を組み合わせると, ポアンカレ写像のパラメータによる微分が部分空間内で適切に表現されないため, 収束性に問題が生ずる. そこで本稿では, パラメータを固定した部分空間シューティング法とパラメータに関する割線法を組み合わせ, 中心多様体の性質を利用することによりフォールド分岐点を求める手法を検討する.
Journal
-
- Proceedings of the IEICE General Conference
-
Proceedings of the IEICE General Conference 1997 83-, 1997-03-06
The Institute of Electronics, Information and Communication Engineers
- Tweet
Details 詳細情報について
-
- CRID
- 1570291227412682880
-
- NII Article ID
- 110003250421
-
- NII Book ID
- AN10471452
-
- Text Lang
- ja
-
- Data Source
-
- CiNii Articles