J-1-15-165 異なる卓越振動数を有する狭帯域非ガウス性不規則励振を受ける線形系の応答分布(J-1-15:同定・推定・信号分析/不規則振動,領域1:解析・設計の高度化と新展開,総合テーマ「海を越え,国を越え,世代を超えて!」)

  • 土田 崇弘
    東京工業大学大学院情報理工学研究科情報環境学専攻
  • 木村 康治
    東京工業大学大学院情報理工学研究科情報環境学専攻

書誌事項

タイトル別名
  • J-1-15-165 Response Distribution of a Linear System Subjected to Narrowband Non-Gaussian Random Excitation with Different Dominant Frequencies

この論文をさがす

説明

Response distribution of a linear system subjected to narrowband non-Gaussian random excitation is investigated. The excitation is a stationary stochastic process characterized by the non-Gaussian probability density and the power spectrum with the bandwidth and dominant frequency parameters. Both bimodal and Laplace distributions are considered as the non-Gaussianity of the excitation. The narrowband non-Gaussian excitation with the desired probability density and spectral density is generated by calculating a two-dimensional Ito stochastic differential equation. In order to determine the drift and diffusion coefficients, a method using the envelope distribution is presented. Monte Carlo simulations are carried out to obtain the stationary response distributions of a linear system subjected to the non-Gaussian excitation with a wide range of bandwidths and dominant frequencies. The results show that the response distribution becomes a shape close to the excitation distribution when the excitation bandwidth is narrower than that of frequency response of the system and the excitation dominant frequency is close to the natural frequency of the system.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1570291227944759296
  • NII論文ID
    110009979116
  • NII書誌ID
    AA11901770
  • ISSN
    13480235
  • 本文言語コード
    ja
  • データソース種別
    • CiNii Articles

問題の指摘

ページトップへ