[Updated on Apr. 18] Integration of CiNii Articles into CiNii Research

ニュース記事の時間的特性を考慮した株価動向予測

Search this article

Abstract

投資家が投資を行う際,株価等の数値情報の他に,新聞記事等の言語情報を基に株の売買を判断する.この判断を支援するため,これまで様々な研究が行われており,数値情報を対象にした研究では,株価の時系列データの特性が多く利用されている.これに対し,言語情報を対象にした研究では,その特性がほとんど利用されていない.これは,言語情報が株価に与える影響の時間的な変化を人手でルール化することが困難だからである.一方で,画像認識や音声認識などの分野において近年注目を集めている深層学習 (Deep Learning) は,大規模なデータから有益な特徴の抽出が可能である.そこで本研究では,深層学習のアプローチを応用し,時間的な変化を考慮した再帰的なネットワークを構築することで株価動向の推定を行う手法を提案する.入力に新聞記事のデータを用いることで,言語情報が与える影響の時間的な変化を捉えることができる.実際の新聞記事と株価のデータを用いて 10 銘柄の株価動向推定を行い,本手法の有効性を示す.

Journal

  • IPSJ SIG Notes

    IPSJ SIG Notes 2015 (4), 1-6, 2015-02-24

    Information Processing Society of Japan (IPSJ)

Details

  • CRID
    1571135652869746048
  • NII Article ID
    110009877756
  • NII Book ID
    AN10505667
  • ISSN
    09196072
  • Text Lang
    ja
  • Data Source
    • CiNii Articles

Report a problem

Back to top