複数のバースト誤りを訂正する符号の限界式

  • HAMADA M.
    Department of Mathematical Engineering and Information Physics, Faculty of Engineering,University of Tokyo

Bibliographic Information

Other Title
  • Bounds for multiple-burst-error-correcting codes

Search this article

Description

複数のバースト誤りを訂正する符号について,その最良の符号化率に関する下界の一つを示す.下界はバルシャモフ・ギルバートの限界の一般化である.また,浜田によって導かれた二つの上界を紹介し,これら三つの上下界の漸近型を与える.最後に,交錯法によって得られる符号の漸近的特性について考察する.
This paper provides a lower bound on the number of codewords of the most efficient multiple-burst-error-correcting codes,given error correcting capabilities and lengths of the codes.The bound is a generalization of the Varsharmov-Gilbert bound.This paper introduces upper bounds derived by Hamada and also reveals how these three bounds behave as their code lengths approach infinity. Finally,asymptotic properties of interleaved codes are investigated.

Journal

  • IEICE Technical Report

    IEICE Technical Report 94 7-12, 1994

    The Institute of Electronics, Information and Communication Engineers

Citations (1)*help

See more

Details 詳細情報について

  • CRID
    1571698602307639808
  • NII Article ID
    110003197392
  • NII Book ID
    AN10013083
  • Text Lang
    en
  • Data Source
    • CiNii Articles

Report a problem

Back to top