- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
しきい値関数を表す二分決定グラフのサイズと変数順序
-
- TAKENAGA Yasuhiko
- Graduate School of Engineering, Kyoto University
-
- NOUZOE Mitsushi
- Graduate School of Engineering, Kyoto University
-
- YAJIMA Shuzo
- Graduate School of Engineering, Kyoto University
Bibliographic Information
- Other Title
-
- Size and Variable Ordering of OBDDs Representing Threshold Functions
Search this article
Description
二分決定グラフはグラフによる論理関数の表現法の一つである。二分決定グラフを用いて論理関数を表現する場合、そのサイズが大きくなると記憶量の点から処理が困難になる。そのため、種々の関数を表現するために必要となる二分決定グラフのサイズに関する研究が重要である。本稿では、しきい値関数を表現する二分決定グラフのサイズについて考察する。しきい値関数を表現する二分決定グラフのサイズの下界がΩ(n2^<cn^<1-ε>>)であることを示す。また、重みの全順序だけを用いたのでは、良い変数順序が得られないことも示す。
An ordered binary decision diagram (OBDD) is a graph representation of a Boolean function. In representing various Boolean functions using OBDDs, the larger the sizes of OBDDs are, the more difficult it is to deal with them because of the memory requirements. Therefore, it is important to investigate the size of OBDDs representing various Boolean functions. In this paper, the size of ordered binary decision diagrams representing threshold functions is discussed. We prove an Ω(n2^<cn^<1-ε>>) lower bound on the OBDD size. We also show that it is not possible to find a good variable ordering only from the total order of weights.
Journal
-
- IEICE technical report. Theoretical foundations of Computing
-
IEICE technical report. Theoretical foundations of Computing 96 (196), 21-28, 1996-07-25
The Institute of Electronics, Information and Communication Engineers
- Tweet
Details 詳細情報について
-
- CRID
- 1571980077283176192
-
- NII Article ID
- 110003191450
-
- NII Book ID
- AN10013152
-
- Text Lang
- en
-
- Data Source
-
- CiNii Articles