Kernel Selection for the Support Vector Machine

  • DEBNATH Rameswar
    Department of Information and Communication Engineering, The University of Electro-Communications
  • TAKAHASHI Haruhisa
    Department of Information and Communication Engineering, The University of Electro-Communications

この論文をさがす

説明

The choice of kernel is an important issue in the support vector machine algorithm, and the performance of it largely depends on the kernel. Up to now, no general rule is available as to which kernel should be used. In this paper we investigate two kernels: Gaussian RBF kernel and polynomial kernel. So far Gaussian RBF kernel is the best choice for practical applications. This paper shows that the polynomial kernel in the normalized feature space behaves better or as good as Gaussian RBF kernel. The polynomial kernel in the normalized feature space is the best alternative to Gaussian RBF kernel.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (15)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1571980077394206080
  • NII論文ID
    110003213904
  • NII書誌ID
    AA10826272
  • ISSN
    09168532
  • 本文言語コード
    en
  • データソース種別
    • CiNii Articles

問題の指摘

ページトップへ