- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
kd-treeによる構造化とGPUを用いた大規模高次元ベクトル群のための高速近傍探索技術の研究
Search this article
Description
局所特徴量を用いた物体認識処理の一部に,高次元ベクトル群の最近傍探索処理がある.この最近傍探索処理では,高次元ベクトル間のユークリッド距離計算が行われている.データベース中のベクトル群の数が大規模になると,最近傍探索の処理時間は膨大になり,物体認識処理全体の速度低下の要因になっている.その為,本研究では,物体認識における最近傍探索処理の高速化の検討を行った.本研究では,GPUの並列演算能力の高さに着目し,データの構造化とGPUでのユークリッド距離計算の並列化することで,認識精度の低下を抑えた探索処理高速化の手法を提案する.
Journal
-
- 第74回全国大会講演論文集
-
第74回全国大会講演論文集 2012 (1), 65-66, 2012-03-06
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1571980077993582464
-
- NII Article ID
- 170000090207
-
- NII Book ID
- AN00349328
-
- Web Site
- http://id.nii.ac.jp/1001/00110044/
-
- Text Lang
- ja
-
- Data Source
-
- CiNii Articles