Nonparametric Speaker Recognition Method Using Earth Mover's Distance

この論文をさがす

説明

In this paper, we propose a distributed speaker recognition method using a nonparametric speaker model and Earth Mover's Distance (EMD). In distributed speaker recognition, the quantized feature vectors are sent to a server. The Gaussian mixture model (GMM), the traditional method used for speaker recognition, is trained using the maximum likelihood approach. However, it is difficult to fit continuous density functions to quantized data. To overcome this problem, the proposed method represents each speaker model with a speaker-dependent VQ code histogram designed by registered feature vectors and directly calculates the distance between the histograms of speaker models and testing quantized feature vectors. To measure the distance between each speaker model and testing data, we use EMD which can calculate the distance between histograms with different bins. We conducted text-independent speaker identification experiments using the proposed method. Compared to results using the traditional GMM, the proposed method yielded relative error reductions of 32% for quantized data.

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (15)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1572261551842025344
  • NII論文ID
    110004719383
  • NII書誌ID
    AA10826272
  • ISSN
    09168532
  • 本文言語コード
    en
  • データソース種別
    • CiNii Articles

問題の指摘

ページトップへ