Tentacled Self-Organizing Map for Effective Data Extraction

Search this article

Description

Since we can accumulate a large amount of data including useless information in recent years, it is important to investigate various extraction method of clusters from data including much noises. The Self-Organizing Map (SOM) has attracted attention for clustering nowadays. In this study, we propose a method of using plural SOMs (TSOM: Tentacled SOM) for effective data extraction. TSOM consists of two kinds of SOM whose features are different, namely, one self-organizes the area where input data are concentrated, and the other self-organizes the whole of the input space. Each SOM of TSOM can catch the information of other SOMs existing in its neighborhood and self-organizes with the competing and accommodating behaviors. We apply TSOM to data extraction from input data including much noise, and can confirm that TSOM successfully extracts only clusters even in the case that we do not know the number of clusters in advance.

Journal

References(9)*help

See more

Details 詳細情報について

  • CRID
    1572261552433592192
  • NII Article ID
    110007540877
  • NII Book ID
    AA10826239
  • ISSN
    09168508
  • Text Lang
    en
  • Data Source
    • CiNii Articles

Report a problem

Back to top