与えられた制約を満たす矩形双対グラフ描画手法
-
- MATSUMOTO Tadafumi
- Department of Circuits and Systems, Faculty of Engineering, Hiroshima University
-
- MIZUNO Kenji
- Department of Circuits and Systems, Faculty of Engineering, Hiroshima University
-
- WATANABE Toshimasa
- Department of Circuits and Systems, Faculty of Engineering, Hiroshima University
Bibliographic Information
- Other Title
-
- Drawing a Rectangular Dual to Meet Prescribed Constraints
Search this article
Description
矩形双対グラフとは,一つの矩形のいくつかの部分矩形への分割であり,PTPグラフと呼ばれる平面グラフの一つの幾何学的双対グラフ(つまりPTPグラフの頂点を矩形,辺を矩形間の隣接関係として表したグラフ)である.本稿ではL矩形双対グラフの各部分矩形の縦横サイズが予め与えられた下限値を満たし、且つ全体矩形の面積が最小あるいは極小になるような矩形双対グラフの(発見的)描画手法を提案し,実験によりその有効性を示す.
A rectangular dual is a dissection of a rectangle into several subrectangles corresponds to vertex of this PTP graph, and two subrectangles share a boundary if and only if the corresponding two vertices are adjacent in the graph. The subject of the paper is to propose a heuristic method for drawing a rectangular dual so that the length and the width of the whole rectangle may be (optimally or nearly) minimized, under the condition that those of each subrectangle are no less than given lower bounds. Experimental results show that the proposed method produces sharp approximate solutions very quickly.
Journal
-
- IPSJ SIG Notes
-
IPSJ SIG Notes 55 45-52, 1997-01-23
Information Processing Society of Japan (IPSJ)
- Tweet
Details 詳細情報について
-
- CRID
- 1572824502024639104
-
- NII Article ID
- 110002812063
-
- NII Book ID
- AN1009593X
-
- ISSN
- 09196072
-
- Text Lang
- en
-
- Data Source
-
- CiNii Articles