Microscopic Structures in Turbulent Diffusion Flames

  • IDA T.
    Department of Mechanical Engineering, Kumano Technical College
  • Ohtake Kazutomo
    Department of Ecological Engineering, Toyohashi University of Technology

この論文をさがす

説明

・rights:日本機械学会・rights:本文データは学協会の許諾に基づきCiNiiから複製したものである・relation:isVersionOf:http://ci.nii.ac.jp/naid/110002976580/
Microscopic structures in turbulent diffusion flames are studied by time-resolved temperature distributions measured by a laser-sheet-illuminated Rayleigh scattering (LRS) method recorded by a high-speed VTR system, and one-point LRS measurement. The microscopic structures of temperature distribution are measured by analyzing the two-dimensional LRS pictures by image processing. Coaxial turbulent diffusion flames at moderate Reynolds numbers, which exhibit typical diffusion flame structures, are formed on laboratory-scale burners. It is found that the flame can be divided into four characteristic regions based on the distributions of macroscale temperature fluctuations. These four regions are visualized by the two-dimensional LRS images. The turbulent heat-transfer mechanisms in these four regions are discussed in terms of the two-dimensional LRS and the power spectral density of temperature fluctuations measured by one-point LRS. Clusters of temperature inhomogeneity are observed by the image analyses in Regions I and III. It is found that different structures of microscopic temperature inhomogeneity exist within Taylor's dissipation length scale defined by velocity fluctuations.

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ