Effects of Phoneme Type and Frequency on Distributed Speaker Identification and Verification
-
- FATTAH Mohamed Abdel
- University of Tokushima
-
- REN Fuji
- University of Tokushima
-
- KUROIWA Shingo
- University of Tokushima
この論文をさがす
説明
In the European Telecommunication Standards Institute (ETSI), Distributed Speech Recognition (DSR) front-end, the distortion added due to feature compression on the front end side increases the variance flooring effect, which in turn increases the identification error rate. The penalty incurred in reducing the bit rate is the degradation in speaker recognition performance. In this paper, we present a nontraditional solution for the previously mentioned problem. To reduce the bit rate, a speech signal is segmented at the client, and the most effective phonemes (determined according to their type and frequency) for speaker recognition are selected and sent to the server. Speaker recognition occurs at the server. Applying this approach to YOHO corpus, we achieved an identification error rate (ER) of 0.05% using an average segment of 20.4% for a testing utterance in a speaker identification task. We also achieved an equal error rate (EER) of 0.42% using an average segment of 15.1% for a testing utterance in a speaker verification task.
収録刊行物
-
- IEICE transactions on information and systems
-
IEICE transactions on information and systems 89 (5), 1712-1719, 2006-05-01
一般社団法人電子情報通信学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1573387452395837184
-
- NII論文ID
- 110007503083
-
- NII書誌ID
- AA10826272
-
- ISSN
- 09168532
-
- 本文言語コード
- en
-
- データソース種別
-
- CiNii Articles