Effects of Phoneme Type and Frequency on Distributed Speaker Identification and Verification

この論文をさがす

説明

In the European Telecommunication Standards Institute (ETSI), Distributed Speech Recognition (DSR) front-end, the distortion added due to feature compression on the front end side increases the variance flooring effect, which in turn increases the identification error rate. The penalty incurred in reducing the bit rate is the degradation in speaker recognition performance. In this paper, we present a nontraditional solution for the previously mentioned problem. To reduce the bit rate, a speech signal is segmented at the client, and the most effective phonemes (determined according to their type and frequency) for speaker recognition are selected and sent to the server. Speaker recognition occurs at the server. Applying this approach to YOHO corpus, we achieved an identification error rate (ER) of 0.05% using an average segment of 20.4% for a testing utterance in a speaker identification task. We also achieved an equal error rate (EER) of 0.42% using an average segment of 15.1% for a testing utterance in a speaker verification task.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (15)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1573387452395837184
  • NII論文ID
    110007503083
  • NII書誌ID
    AA10826272
  • ISSN
    09168532
  • 本文言語コード
    en
  • データソース種別
    • CiNii Articles

問題の指摘

ページトップへ