Genetic Analysis of Cytochrome b5 from Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4: Cloning, RNA Editing and Expression of the Gene in Escherichia coli, and Purification and Characterization ofthe Gene Product.

  • Kobayashi Michihiko
    Division of Applied Life Sciences. Graduate School of Agriculture, Kyoto University
  • Sakuradani Eiji
    Division of Applied Life Sciences. Graduate School of Agriculture, Kyoto University
  • Shimizu Sakayu
    Division of Applied Life Sciences. Graduate School of Agriculture, Kyoto University

説明

Information on the amino acid sequences of the internal peptide fragments of cytochrome b5 from Mortierella hygrophila was used to prepare synthetic oligonucleotides as primers for the polymerase chain reaction. A 100-base DNA fragment was thus amplified, by using a genomic gene from Mortierella alpina 1S-4 as a template, which produced polyunsaturated fatty acids such as arachidonic acid. The amplified DNA fragment was used as the probe to clone both a 523-base cDNA fragment and a 2.1-kilobase Sal1-NruI genomic fragment coding for the whole M. alpina 1S-4 cytochrome b5. On the basis of nucleotide sequences of both cytochrome b5 genomic gene and cDNA, the genomic cytochrome b5 gene was found to consist of four exons and three introns. A novel type of RNA editing, in which the cDNA included either guanine insertion or adenine→guanine substitution at one base upstream of poly(A), was interestingly observed. The deduced amino acid sequence of M. alpina 1S-4 cytochrome b5 showed significant similarities with those of cytochrome b5s from other organisms such as rat, chicken, and yeast. The soluble form of the cytochrome b5 gene was expressed to 16% of the total soluble protein in Eseherichia coli. The holo-cytochrome b5 accounted for 8% of the total cytochrome b5 in the transformants. The purified cytochrome b5 showed the oxidized and reduced absorbance spectra characteristic of fungal microsomal cytochrome b5.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ