- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
An optimum design of the LOFIC CMOS image sensor for high sensitivity, low noise, and high full well capacity
Search this article
Description
It is indispensable for high quality image sensors to have performances of high sensitivity, low noise, high full well capacity and good linear response. The CMOS image sensor with the lateral overflow integration capacitor (LOFIC) has been accomplishing these performances because of its wide dynamic range capability in one exposure. Recently, we have improved the SNR of the LOFIC CMOS image sensor and achieved the number of input-referred noise electrons of 2 e- or below without any column amplifier circuits by increasing the photo-electric conversion gain at the floating diffusion (FD) in pixel as keeping low dark current, good uniformity and high well capacity. It is clear that the relation among the conversion gain, the SNR and the full well capacity decides the optimum design for the FD capacitance and the LOFIC to realize a high quality image sensor. In this paper, the optimum design method of the LOFIC CMOS image sensor for high sensitivity, low noise and high full well capacity is discussed through theoretical analysis and experiments by using the fabricated LOFIC CMOS image sensor.
Journal
-
- SPIE Proceedings
-
SPIE Proceedings 6817 681702-, 2008-02-14
SPIE
- Tweet
Details 詳細情報について
-
- CRID
- 1870020692550201216
-
- ISSN
- 0277786X
-
- Data Source
-
- OpenAIRE