Multi-Hypothesis Outdoor Localization using Multiple Visual Features with a Rough Map

この論文をさがす

説明

We describe a method of mobile robot localization based on a rough map using stereo vision, which uses multiple visual features to detect and segment the buildings in the robot's field of view. The rough map is an inaccurate map with large uncertainties in the shapes, the dimensions and the locations of objects so that it can be built easily. The robot fuses odometry and vision information using extended Kalman filters to update the robot pose and the associated uncertainty based on the recognition of buildings in the map. We use multi-hypothesis Kalman filter to generate and track Gaussian pose hypotheses. An experimental result shows the feasibility of our localization method in an outdoor environment.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ