ON -K<sup>2</sup> FOR NORMAL SURFACE SINGULARITIES

DOI DOI オープンアクセス

この論文をさがす

説明

<jats:p> In this paper we show the lower bound of the set of non-zero -K<jats:sup>2</jats:sup> for normal surface singularities establishing that this set has no accumulation points from above. We also prove that every accumulation point from below is a rational number and every positive integer is an accumulation point. Every rational number can be an accumulation point modulo ℤ. We determine all accumulation points in [0, 1]. If we fix the value -K<jats:sup>2</jats:sup>, then the values of p<jats:sub>g</jats:sub>, p<jats:sub>a</jats:sub>, mult, embdim and the numerical indices are bounded, while the numbers of the exceptional curves are not bounded. </jats:p>

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ